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Graph Learning (GL)

Graph data
• Topology (nodes + edges)

• Features 

Graph Learning (GL) models
• Graph data + deep learning models

• Recommendation, CV, NLP

Large-scale deployments
• Model zoo: PyG, Amazon DGL

• Pinterest, Google, Alibaba, …
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Distributed GL systems
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Ethernet

InfiniBand

Server

Data management
• Graph topology, features, models

• Decision: Partitioning, replication

Task management
• Sampling, feature aggregation, training

• Decision: CPU, GPU or both?

Decisions are workload-dependent
• Model (e.g., NN depth)

• Data (e.g., feature size)

• Hardware (e.g., NVLink)
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Problems of existing distributed GL systems
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Production systems: Amazon DistDGL and AliGraph [VLDB’20]
• Fixed data management (e.g., Metis)

• Fixed task management (e.g., sampling on CPU, training on GPU)

Research prototype: P3 [OSDI’21]
• Specific to certain GL models

• Under-utilise GPUs (e.g. <30%)

[1] DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs, 2020
[2] AliGraph: A Comprehensive Graph Neural Network Platform, VLDB 2020
[3] P3: Distributed Deep Graph Learning at Scale, OSDI 2021

How to design a generic workload-aware distributed GL system?

Issues: 
• Data access bottleneck 
• Computation bottleneck



Quiver overview
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Workload-aware data management
• GPU-based distributed computation of data access-probability (i.e., hot/cold vertices)
• Data partitioning based on access-probability
• Data replication based on available networks and memory

Workload-aware task management
• Partition a training batch into micro-batches
• Assign micro-batches to all processors (i.e., CPUs + GPUs)
• Auto-tune micro-batch sizes and assignment

Generality and compatibility
• Provide unified tensors to support PyG and DGL models



Workload-aware data management
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Training dataset

Sampling function

Compute access probability 
with multi-GPU

GL data with access-probability
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Network and memory:
• NVLink, InfiniBand, NUMA
• CPU memory, GPU memory

Balanced aggregated 
access probability



Workload-aware task management
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Data batch

Micro-batch

CPU

GPU

Executing GL tasks on distributed 
heterogeneous processorsBatch-based training

Sampling Feature

Sampling Feature Training

Tuning micro-batch assignment to reduce batch completion time
• Dispatchers work in a decentralised manner

Collective 
communication

Micro-batch 
dispatchers



Multi-GPU Experiments

Quiver incurs low overhead in analysing workload, and out-performs DGL and PyG by up to 5x
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Dataset: (1) ogbn-products: 2.5M nodes, 62M edges; (2) ogbn-papers100M: 110M nodes, 1.6B edges 



Cluster Experiment

Quiver can effectively minimise communication cost and utilise distributed heterogeneous processors
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Meg240M dataset: 240M nodes, 1.7B edges (The biggest GL workload in open benchmarks)



Summary
• Quiver: A workload-aware distributed GL system
• Superior performance (Up to 10x over state-of-the-art)
• Open-source GitHub project: quiver-team/torch-quiver
• Fast growing community 
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Thank You — Any Questions?
Zeyuan Tan

zeyuan.tan@ed.ac.uk

Project link:


